時(shí)間:2022-08-07 12:38:42
序論:好文章的創(chuàng)作是一個(gè)不斷探索和完善的過(guò)程,我們?yōu)槟扑]十篇電力電子技術(shù)論文范例,希望它們能助您一臂之力,提升您的閱讀品質(zhì),帶來(lái)更深刻的閱讀感受。
電力電子技術(shù)的核心就是整流、逆變、斬波和交交變換四大基本電路,在電路工作過(guò)程的分析中,通常一個(gè)電路都有多個(gè)工作狀態(tài),不同的工作狀態(tài)又分別對(duì)應(yīng)著不同的電壓電流波形,也就是說(shuō)電路的工作過(guò)程往往都是動(dòng)態(tài)的過(guò)程,而傳統(tǒng)的書本上的文字和原理圖是無(wú)法很好地展現(xiàn)動(dòng)態(tài)過(guò)程的。這時(shí),如果采用幻燈片等多媒體形式,可以將電路工作的動(dòng)態(tài)過(guò)程很好地展現(xiàn)給學(xué)生們觀看,把書本上靜態(tài)的電路以及波形圖動(dòng)起來(lái),這樣就能夠讓學(xué)生們更好地理解電力電子電路的工作過(guò)程。與此同時(shí),結(jié)合書本上的理論,再將不同電路的特點(diǎn)進(jìn)行總結(jié),使同學(xué)們復(fù)習(xí)時(shí)結(jié)合著書中的理論,頭腦中聯(lián)想著多媒體演示動(dòng)畫,便會(huì)在學(xué)習(xí)中事半功倍,容易記憶,提高學(xué)生的分析計(jì)算和實(shí)際解題的能力。
2.器件與控制部分應(yīng)注重練習(xí)。
電力電子器件及控制部分具有覆蓋面大、定性與定量相結(jié)合的特點(diǎn),學(xué)好這一部分,就必須將概念的理解與相關(guān)的計(jì)算進(jìn)行練習(xí),在習(xí)題式的教學(xué)中,不斷提高分析問(wèn)題和解決問(wèn)題的能力。研究生階段,各高校幾乎很少帶領(lǐng)學(xué)生做與課程相關(guān)的習(xí)題,多數(shù)學(xué)生也只有在考試的時(shí)候才有機(jī)會(huì)在試卷中解答一些問(wèn)題,雖說(shuō)現(xiàn)在不提倡傳統(tǒng)針對(duì)考試的題海戰(zhàn)術(shù),但是平時(shí)適當(dāng)做一些典型的練習(xí)還是有必要的,電力電子器件種類多、特點(diǎn)各不相同,而控制方法也有很多,甚至與自動(dòng)控制原理等其他學(xué)科相關(guān)聯(lián),在教學(xué)中適當(dāng)找一些典型例題進(jìn)行講解,可以讓同學(xué)們?cè)诜彪s的知識(shí)中抓住重點(diǎn)內(nèi)容進(jìn)行突破,最終掌握這部分知識(shí)要點(diǎn)。
3.學(xué)生自主參與新技術(shù)教學(xué)。
電力電子技術(shù)具有發(fā)展速度快的特點(diǎn),新的技術(shù)和應(yīng)用領(lǐng)域不斷出現(xiàn),加強(qiáng)電力電子新技術(shù)的教學(xué)可以擴(kuò)展學(xué)生知識(shí)面,掌握電力電子技術(shù)發(fā)展新方向。這一部分的特點(diǎn)是沒(méi)有定量計(jì)算、難度不大、但對(duì)于資料的收集工作量比較大,根據(jù)這些特點(diǎn),在教學(xué)中,可以將這部分安排給每個(gè)學(xué)生進(jìn)行講解,在講解前每個(gè)同學(xué)查找相關(guān)資料,然后對(duì)資料進(jìn)行分類總結(jié),加入自己的理解,在講解過(guò)程中既可以使用多媒體也可使用板書的形式,講解后學(xué)生之間可以相互提出問(wèn)題,相互討論,形成良好的研究氛圍。在這種學(xué)生自主教學(xué)的過(guò)程中,既提高了學(xué)生查找資料的能力,也能提高學(xué)生的概括的創(chuàng)新能力,還為研究生畢業(yè)學(xué)術(shù)論文的撰寫提供了相關(guān)的經(jīng)驗(yàn)。
二、實(shí)驗(yàn)教學(xué)應(yīng)進(jìn)行分類
電力電子技術(shù)是一個(gè)應(yīng)用性很強(qiáng)的一門學(xué)科,在理論教學(xué)的同時(shí)一定要有相應(yīng)的實(shí)驗(yàn)來(lái)配合和補(bǔ)充,開(kāi)設(shè)實(shí)驗(yàn)課是對(duì)理論課的延伸和補(bǔ)充,更能夠突出應(yīng)用型學(xué)科的特色。在實(shí)驗(yàn)教學(xué)上,應(yīng)分為驗(yàn)證實(shí)驗(yàn)、探究實(shí)驗(yàn)、拓展實(shí)習(xí)三個(gè)部分進(jìn)行教學(xué)。
1.驗(yàn)證實(shí)驗(yàn)應(yīng)緊密結(jié)合課本。
驗(yàn)證性實(shí)驗(yàn)的特點(diǎn)是對(duì)已經(jīng)有的理論進(jìn)行實(shí)驗(yàn)驗(yàn)證,與學(xué)生的理論教學(xué)緊密銜接,通過(guò)書上的理論來(lái)指導(dǎo)實(shí)驗(yàn)的操作,同時(shí)實(shí)驗(yàn)的結(jié)果又可以加深學(xué)生對(duì)于書本理論的深度理解。在理論課程之后,應(yīng)當(dāng)有相應(yīng)的實(shí)驗(yàn)課程相跟進(jìn),在實(shí)驗(yàn)開(kāi)始前,老師帶領(lǐng)學(xué)生對(duì)課本知識(shí)點(diǎn)進(jìn)行回顧,確定實(shí)驗(yàn)?zāi)康暮蛯?shí)驗(yàn)步驟,同學(xué)們按照實(shí)驗(yàn)要求完成相應(yīng)的實(shí)驗(yàn)操作,并能夠運(yùn)用書本上的知識(shí)來(lái)解釋實(shí)驗(yàn)中的現(xiàn)象,最后通過(guò)實(shí)驗(yàn)報(bào)告的形式進(jìn)行總結(jié),得出驗(yàn)證性的結(jié)論。
2.鼓勵(lì)開(kāi)展探究性試驗(yàn)。
電力電子技術(shù)是一門正在快速發(fā)展的學(xué)科,在實(shí)驗(yàn)教學(xué)中,應(yīng)當(dāng)鼓勵(lì)學(xué)生進(jìn)行自主探究,通過(guò)對(duì)已有知識(shí)的學(xué)習(xí)讓學(xué)生們充分發(fā)揮想象力,制作一些相關(guān)的小制作、小發(fā)明,在探究性試驗(yàn)的過(guò)程中培養(yǎng)學(xué)生的創(chuàng)新能力。學(xué)生根據(jù)自己掌握的知識(shí),結(jié)合當(dāng)今電力電子發(fā)展的前沿技術(shù),加上自己的想象力和創(chuàng)造力,獨(dú)立設(shè)計(jì)出屬于自己的電子作品,而在探究的過(guò)程中難免會(huì)遇到一些問(wèn)題,這時(shí)老師應(yīng)進(jìn)行適當(dāng)指導(dǎo),給出一些方案,讓學(xué)生自主解決實(shí)際問(wèn)題。平時(shí)盡可能地開(kāi)放實(shí)驗(yàn)室,使學(xué)生增加動(dòng)手操作機(jī)會(huì)。此外還應(yīng)當(dāng)鼓勵(lì)學(xué)生參加“挑戰(zhàn)杯”等科技比賽,增加在創(chuàng)新方面的交流合作,從而學(xué)會(huì)更多解決問(wèn)題的新方法。
3.拓展實(shí)習(xí)應(yīng)突出實(shí)際應(yīng)用。
在傳統(tǒng)的教學(xué)環(huán)節(jié)之外,對(duì)于電力電子技術(shù)這種應(yīng)用型很強(qiáng)的學(xué)科,應(yīng)適當(dāng)組織學(xué)生到某個(gè)單位進(jìn)行參觀學(xué)習(xí)。學(xué)習(xí)的目的是為了應(yīng)用,當(dāng)今電力電子技術(shù)已經(jīng)應(yīng)用在了許多領(lǐng)域之中,在實(shí)驗(yàn)教學(xué)中可以聯(lián)系某個(gè)具體單位進(jìn)行參觀,在實(shí)際的生產(chǎn)過(guò)程中,讓學(xué)生們更加具體地了解電力電子技術(shù)的應(yīng)用。除了參觀之外,也可由老師或者學(xué)生找一些與電力電子技術(shù)應(yīng)用相關(guān)的視頻資料,分享給大家進(jìn)行觀看,也可以起到非常好的效果。實(shí)習(xí)結(jié)束之后,學(xué)生以報(bào)告的形式寫出自己學(xué)到了什么或者是心得體會(huì)。這樣,理論聯(lián)系實(shí)際,對(duì)于理工科的教學(xué)是有很大幫助的。
2電力電子技術(shù)的未來(lái)發(fā)展趨勢(shì)
從近幾十年的發(fā)展歷程中我們可以看出,半導(dǎo)體的發(fā)明與應(yīng)用有效地推動(dòng)了電子技術(shù)的快速發(fā)展,其中晶閘管等電力半導(dǎo)體在這一過(guò)程中發(fā)揮了重要的作用。在進(jìn)入20世紀(jì)70年代后,半控型晶閘管形成由低電壓小電流到高電壓大電流的系列產(chǎn)品,被稱為第一代電力電子器件。隨著電力電子技術(shù)理論研究和半導(dǎo)體制造工藝水平的不斷提高,先后研制出GTR、GTO、功率MOSFET等自關(guān)斷全控型第二代電力電子器件。近期研制的以絕緣柵雙極晶體管(IGBT)為代表的第三代電力電子器件,開(kāi)始向大容量高頻率、響應(yīng)快、低損耗的方向發(fā)展,這又是一個(gè)飛躍。步入20世紀(jì)90年代后,電力電子技術(shù)得到突飛猛進(jìn)的發(fā)展,與該技術(shù)有關(guān)的產(chǎn)品也得到進(jìn)一步升級(jí),大都朝著智能化、模塊化方向發(fā)展,逐步形成了電力電子技術(shù)的三步走模式及理論的研發(fā),產(chǎn)品的研制、產(chǎn)品的應(yīng)用,成為國(guó)際科研領(lǐng)域的新星,成為經(jīng)濟(jì)社會(huì)發(fā)展的熱門行業(yè)。但是,就目前我國(guó)電力電子技術(shù)發(fā)展現(xiàn)狀來(lái)看,還不容樂(lè)觀,其中電力半導(dǎo)體器件的研發(fā)與應(yīng)用同西方發(fā)達(dá)國(guó)家相比,還存在較大的差距,還比較落后,所以,如果在21世紀(jì)國(guó)際電力電子技術(shù)迅猛發(fā)展的背景下,我國(guó)半導(dǎo)體器件的落后狀態(tài)得不到改善,將直接影響我國(guó)國(guó)民經(jīng)濟(jì)的快速發(fā)展,因此,對(duì)于我國(guó)電力電子技術(shù)的發(fā)展趨勢(shì)來(lái)說(shuō),仍然任重而道遠(yuǎn)。
1.1整流器時(shí)代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費(fèi)的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動(dòng)的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無(wú)軌電車等)和直流傳動(dòng)(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開(kāi)發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時(shí)國(guó)內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國(guó)大大小小的制造硅整流器的半導(dǎo)體廠家就是那時(shí)的產(chǎn)物。
1.2逆變器時(shí)代
七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時(shí)電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無(wú)功功率動(dòng)態(tài)補(bǔ)償?shù)取_@時(shí)的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3變頻器時(shí)代
進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問(wèn)世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來(lái)機(jī)遇。MOSFET和IGBT的相繼問(wèn)世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計(jì),到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場(chǎng)上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實(shí)現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1計(jì)算機(jī)高效率綠色電源
高速發(fā)展的計(jì)算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會(huì),同時(shí)也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計(jì)算機(jī)全面采用了開(kāi)關(guān)電源,率先完成計(jì)算機(jī)電源換代。接著開(kāi)關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。
計(jì)算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對(duì)環(huán)境無(wú)害的個(gè)人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國(guó)環(huán)境保護(hù)署l992年6月17日"能源之星"計(jì)劃規(guī)定,桌上型個(gè)人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開(kāi)關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開(kāi)關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動(dòng)了通信電源的發(fā)展。高頻小型化的開(kāi)關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開(kāi)關(guān)電源取代,高頻開(kāi)關(guān)電源(也稱為開(kāi)關(guān)型整流器SMR)通過(guò)MOSFET或IGBT的高頻工作,開(kāi)關(guān)頻率一般控制在50-100kHz范圍內(nèi),實(shí)現(xiàn)高效率和小型化。近幾年,開(kāi)關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對(duì)二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個(gè)固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無(wú)軌電車、地鐵列車、電動(dòng)車的無(wú)級(jí)變速和控制,同時(shí)使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時(shí)收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開(kāi)關(guān)電源),同時(shí)還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開(kāi)關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實(shí)現(xiàn)小型化,因此就要不斷提高開(kāi)關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開(kāi)關(guān)和零電壓開(kāi)關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計(jì)算機(jī)、通信系統(tǒng)以及要求提供不能中斷場(chǎng)合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開(kāi)關(guān)送到負(fù)載。為了在逆變器故障時(shí)仍能向負(fù)載提供能量,另一路備用電源通過(guò)電源轉(zhuǎn)換開(kāi)關(guān)來(lái)實(shí)現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實(shí)現(xiàn)對(duì)UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5變頻器電源
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動(dòng)系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過(guò)整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動(dòng)交流異步電動(dòng)機(jī)實(shí)現(xiàn)無(wú)級(jí)調(diào)速。
國(guó)際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問(wèn)世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點(diǎn)。國(guó)內(nèi)于90年代初期開(kāi)始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開(kāi)發(fā)生產(chǎn)熱點(diǎn)。預(yù)計(jì)到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
2.6高頻逆變式整流焊機(jī)電源
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開(kāi)路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問(wèn)題成為最關(guān)鍵的問(wèn)題,也是用戶最關(guān)心的問(wèn)題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過(guò)對(duì)多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對(duì)系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國(guó)外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7大功率開(kāi)關(guān)型高壓直流電源
大功率開(kāi)關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開(kāi)始,日本的一些公司開(kāi)始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開(kāi)關(guān)電源技術(shù)迅速發(fā)展。德國(guó)西門子公司采用功率晶體管做主開(kāi)關(guān)元件,將電源的開(kāi)關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國(guó)內(nèi)對(duì)靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開(kāi)關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運(yùn)時(shí),將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時(shí)還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時(shí),網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動(dòng)態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開(kāi)關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開(kāi)關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號(hào)為電壓環(huán)誤差信號(hào)與全波整流電壓取樣信號(hào)之乘積。
2.9分布式開(kāi)關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對(duì)分布式高頻開(kāi)關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動(dòng)了分布式高頻開(kāi)關(guān)電源系統(tǒng)研究的展開(kāi)。自八十年代后期開(kāi)始,這一方向已成為國(guó)際電力電子學(xué)界的研究熱點(diǎn),論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點(diǎn)。已被大型計(jì)算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場(chǎng)合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動(dòng)機(jī)驅(qū)動(dòng)電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開(kāi)關(guān)電源的發(fā)展趨勢(shì)
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開(kāi)關(guān)電源技術(shù)均處于核心地位。對(duì)于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開(kāi)關(guān)電源技術(shù),其體積和重量都會(huì)大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動(dòng)汽車和變頻傳動(dòng)中,更是離不開(kāi)開(kāi)關(guān)電源技術(shù),通過(guò)開(kāi)關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動(dòng)控制。高頻開(kāi)關(guān)電源技術(shù),更是各種大功率開(kāi)關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1高頻化
理論分析和實(shí)踐經(jīng)驗(yàn)表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計(jì)的5~l0%。無(wú)論是逆變式整流焊機(jī),還是通訊電源用的開(kāi)關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)"整流行業(yè)"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造,成為"開(kāi)關(guān)變換類電源",其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來(lái)采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來(lái)顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價(jià)值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見(jiàn)的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開(kāi)關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實(shí)質(zhì)上都屬于"標(biāo)準(zhǔn)"功率模塊(SPM)。近年,有些公司把開(kāi)關(guān)器件的驅(qū)動(dòng)保護(hù)電路也裝到功率模塊中去,構(gòu)成了"智能化"功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計(jì)制造。實(shí)際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對(duì)器件造成更大的電應(yīng)力(表現(xiàn)為過(guò)電壓、過(guò)電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開(kāi)發(fā)了"用戶專用"功率模塊(ASPM),它把一臺(tái)整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個(gè)模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過(guò)嚴(yán)格、合理的熱、電、機(jī)械方面的設(shè)計(jì),達(dá)到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個(gè)模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺(tái)新型的開(kāi)關(guān)電源裝置。由此可見(jiàn),模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過(guò)增加相對(duì)整個(gè)系統(tǒng)來(lái)說(shuō)功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬(wàn)一出現(xiàn)單模塊故障,也不會(huì)影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時(shí)間。
3.3數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號(hào)來(lái)設(shè)計(jì)和工作的。在六、七十年代,電力電子技術(shù)擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號(hào)、數(shù)字電路顯得越來(lái)越重要,數(shù)字信號(hào)處理技術(shù)日趨完善成熟,顯示出越來(lái)越多的優(yōu)點(diǎn):便于計(jì)算機(jī)處理控制、避免模擬信號(hào)的畸變失真、減小雜散信號(hào)的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測(cè)遙調(diào),也便于自診斷、容錯(cuò)等技術(shù)的植入。所以,在八、九十年代,對(duì)于各類電路和系統(tǒng)的設(shè)計(jì)來(lái)說(shuō),模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問(wèn)題以及功率因數(shù)修正(PFC)等問(wèn)題的解決,離不開(kāi)模擬技術(shù)的知識(shí),但是對(duì)于智能化的開(kāi)關(guān)電源,需要用計(jì)算機(jī)控制時(shí),數(shù)字化技術(shù)就離不開(kāi)了。
3.4綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對(duì)環(huán)境的污染;其次這些電源不能(或少)對(duì)電網(wǎng)產(chǎn)生污染,國(guó)際電工委員會(huì)(IEC)對(duì)此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實(shí)上,許多功率電子節(jié)電設(shè)備,往往會(huì)變成對(duì)電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。
總而言之,電力電子及開(kāi)關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會(huì)使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會(huì)開(kāi)拓更多更新的應(yīng)用領(lǐng)域。開(kāi)關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實(shí)現(xiàn),將標(biāo)志著這些技術(shù)的成熟,實(shí)現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開(kāi)關(guān)電源技術(shù)為核心的通信用開(kāi)關(guān)電源,僅國(guó)內(nèi)有20多億人民幣的市場(chǎng)需求,吸引了國(guó)內(nèi)外一大批科技人員對(duì)其進(jìn)行開(kāi)發(fā)研究。開(kāi)關(guān)電源代替線性電源和相控電源是大勢(shì)所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國(guó)內(nèi)市場(chǎng)正在啟動(dòng),并將很快發(fā)展起來(lái)。還有其它許多以開(kāi)關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_(kāi)發(fā)。
參考文獻(xiàn):
[1]林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992。
[2]季幼章:迎接知識(shí)經(jīng)濟(jì)時(shí)代,發(fā)展電源技術(shù)應(yīng)用,電源技術(shù)應(yīng)用,N0.2,l998。
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問(wèn)題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問(wèn)題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時(shí)代、逆變器時(shí)代和變頻器時(shí)代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來(lái)的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時(shí)代。
1、整流器時(shí)代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費(fèi)的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動(dòng)的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無(wú)軌電車等)和直流傳動(dòng)(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開(kāi)發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時(shí)國(guó)內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國(guó)大大小小的制造硅整流器的半導(dǎo)體廠家就是那時(shí)的產(chǎn)物。
2、逆變器時(shí)代
七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時(shí)電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無(wú)功功率動(dòng)態(tài)補(bǔ)償?shù)取_@時(shí)的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
3、變頻器時(shí)代
進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問(wèn)世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來(lái)機(jī)遇。MOSFET和IGBT的相繼問(wèn)世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計(jì),到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場(chǎng)上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實(shí)現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
二、電力電子技術(shù)的應(yīng)用
1、一般工業(yè)
工業(yè)中大量應(yīng)用各種交直流電動(dòng)機(jī)。直流電動(dòng)機(jī)有良好的調(diào)速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來(lái),由于電力電子變頻技術(shù)的迅速發(fā)展,使得交流電機(jī)的調(diào)速性能可與直流電機(jī)相媲美,交流調(diào)速技術(shù)大量應(yīng)用并占據(jù)主導(dǎo)地位。大至數(shù)千kW的各種軋鋼機(jī),小到幾百W的數(shù)控機(jī)床的伺服電機(jī),以及礦山牽引等場(chǎng)合都廣泛采用電力電子交直流調(diào)速技術(shù)。一些對(duì)調(diào)速性能要求不高的大型鼓風(fēng)機(jī)等近年來(lái)也采用了變頻裝置,以達(dá)到節(jié)能的目的。還有些不調(diào)速的電機(jī)為了避免起動(dòng)時(shí)的電流沖擊而采用了軟起動(dòng)裝置,這種軟起動(dòng)裝置也是電力電子裝置。電化學(xué)工業(yè)大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術(shù)還大量用于冶金工業(yè)中的高頻、中頻感應(yīng)加熱電源、淬火電源及直流電弧爐電源等場(chǎng)合。
2、交通運(yùn)輸
電氣化鐵道中廣泛采用電力電子技術(shù)。電氣機(jī)車中的直流機(jī)車中采用整流裝置,交流機(jī)車采用變頻裝置。直流斬波器也廣泛用于鐵道車輛。在未來(lái)的磁懸浮列車中,電力電子技術(shù)更是一項(xiàng)關(guān)鍵技術(shù)。除牽引電機(jī)傳動(dòng)外,車輛中的各種輔助電源也都離不開(kāi)電力電子技術(shù)。電動(dòng)汽車的電機(jī)靠電力電子裝置進(jìn)行電力變換和驅(qū)動(dòng)控制,其蓄電池的充電也離不開(kāi)電力電子裝置。一臺(tái)高級(jí)汽車中需要許多控制電機(jī),它們也要靠變頻器和斬波器驅(qū)動(dòng)并控制。飛機(jī)、船舶需要很多不同要求的電源,因此航空和航海都離不開(kāi)電力電子技術(shù)。如果把電梯也算做交通運(yùn)輸,那么它也需要電力電子技術(shù)。以前的電梯大都采用直流調(diào)速系統(tǒng),而近年來(lái)交流變頻調(diào)速已成為主流。3、電力系統(tǒng)
電力電子技術(shù)在電力系統(tǒng)中有著非常廣泛的應(yīng)用。據(jù)估計(jì),發(fā)達(dá)國(guó)家在用戶最終使用的電能中,有60%以上的電能至少經(jīng)過(guò)一次以上電力電子變流裝置的處理。電力系統(tǒng)在通向現(xiàn)代化的進(jìn)程中,電力電子技術(shù)是關(guān)鍵技術(shù)之一。可以毫不夸張地說(shuō),如果離開(kāi)電力電子技術(shù),電力系統(tǒng)的現(xiàn)代化就是不可想象的。直流輸電在長(zhǎng)距離、大容量輸電時(shí)有很大的優(yōu)勢(shì),其送電端的整流閥和受電端的逆變閥都采用晶閘管變流裝置。近年發(fā)展起來(lái)的柔流輸電(FACTS)也是依靠電力電子裝置才得以實(shí)現(xiàn)的。無(wú)功補(bǔ)償和諧波抑制對(duì)電力系統(tǒng)有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無(wú)功補(bǔ)償裝置。近年來(lái)出現(xiàn)的靜止無(wú)功發(fā)生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優(yōu)越的無(wú)功功率和諧波補(bǔ)償?shù)男阅堋T谂潆娋W(wǎng)系統(tǒng),電力電子裝置還可用于防止電網(wǎng)瞬時(shí)停電、瞬時(shí)電壓跌落、閃變等,以進(jìn)行電能質(zhì)量控制,改善供電質(zhì)量。
在變電所中,給操作系統(tǒng)提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。
4、電子裝置用電源
各種電子裝置一般都需要不同電壓等級(jí)的直流電源供電。通信設(shè)備中的程控交換機(jī)所用的直流電源以前用晶閘管整流電源,現(xiàn)在已改為采用全控型器件的高頻開(kāi)關(guān)電源。大型計(jì)算機(jī)所需的工作電源、微型計(jì)算機(jī)內(nèi)部的電源現(xiàn)在也都采用高頻開(kāi)關(guān)電源。在各種電子裝置中,以前大量采用線性穩(wěn)壓電源供電,由于高頻開(kāi)關(guān)電源體積小、重量輕、效率高,現(xiàn)在已逐漸取代了線性電源。因?yàn)楦鞣N信息技術(shù)裝置都需要電力電子裝置提供電源,所以可以說(shuō)信息電子技術(shù)離不開(kāi)電力電子技術(shù)。
5、家用電器
照明在家用電器中占有十分突出的地位。由于電力電子照明電源體積小、發(fā)光效率高、可節(jié)省大量能源,通常被稱為“節(jié)能燈”,它正在逐步取代傳統(tǒng)的白熾燈和日光燈。變頻空調(diào)器是家用電器中應(yīng)用電力電子技術(shù)的典型例子。電視機(jī)、音響設(shè)備、家用計(jì)算機(jī)等電子設(shè)備的電源部分也都需要電力電子技術(shù)。此外,有些洗衣機(jī)、電冰箱、微波爐等電器也應(yīng)用了電力電子技術(shù)。電力電子技術(shù)廣泛用于家用電器使得它和我們的生活變得十分貼近。
1前言
電力電子技術(shù)是一個(gè)以功率半導(dǎo)體器件、電路技術(shù)、計(jì)算機(jī)技術(shù)、現(xiàn)代控制技術(shù)為支撐的技術(shù)平臺(tái)。經(jīng)過(guò)50年的發(fā)展歷程,它在傳統(tǒng)產(chǎn)業(yè)設(shè)備發(fā)行、電能質(zhì)量控制、新能源開(kāi)發(fā)和民用產(chǎn)品等方面得到了越來(lái)越廣泛的應(yīng)用。最成功地應(yīng)用于電力系統(tǒng)的大功率電力電子技術(shù)是直流輸電(HVDC)。自20世紀(jì)80年代,柔流輸電(FACTS)概念被提出后,電力電子技術(shù)在電力系統(tǒng)中的應(yīng)用研究得到了極大的關(guān)注,多種設(shè)備相繼出現(xiàn)。本文介紹了電力電子技術(shù)在發(fā)電環(huán)節(jié)中、輸電環(huán)節(jié)中、在配電環(huán)節(jié)中的應(yīng)用和節(jié)能環(huán)節(jié)的運(yùn)用。
2電力電子技術(shù)的應(yīng)用
自20世紀(jì)80年代,柔流輸電(FACTS)概念被提出后,電力電子技術(shù)在電力系統(tǒng)中的應(yīng)用研究得到了極大的關(guān)注,多種設(shè)備相繼出現(xiàn)。已有不少文獻(xiàn)介紹和總結(jié)了相關(guān)設(shè)備的基本原理和應(yīng)用現(xiàn)狀。以下按照電力系統(tǒng)的發(fā)電、輸電和配電以及節(jié)電環(huán)節(jié),列舉電力電子技術(shù)的應(yīng)用研究和現(xiàn)狀。
2.1在發(fā)電環(huán)節(jié)中的應(yīng)用
電力系統(tǒng)的發(fā)電環(huán)節(jié)涉及發(fā)電機(jī)組的多種設(shè)備,電力電子技術(shù)的應(yīng)用以改善這些設(shè)備的運(yùn)行特性為主要目的。
2.1.1大型發(fā)電機(jī)的靜止勵(lì)磁控制
靜止勵(lì)磁采用晶閘管整流自并勵(lì)方式,具有結(jié)構(gòu)簡(jiǎn)單、可靠性高及造價(jià)低等優(yōu)點(diǎn),被世界各大電力系統(tǒng)廣泛采用。由于省去了勵(lì)磁機(jī)這個(gè)中間慣性環(huán)節(jié),因而具有其特有的快速性調(diào)節(jié),給先進(jìn)的控制規(guī)律提供了充分發(fā)揮作用并產(chǎn)生良好控制效果的有利條件。
2.1.2水力、風(fēng)力發(fā)電機(jī)的變速恒頻勵(lì)磁
水力發(fā)電的有效功率取決于水頭壓力和流量,當(dāng)水頭的變化幅度較大時(shí)(尤其是抽水蓄能機(jī)組),機(jī)組的最佳轉(zhuǎn)速變隨之發(fā)生變化。風(fēng)力發(fā)電的有效功率與風(fēng)速的三次方成正比,風(fēng)車捕捉最大風(fēng)能的轉(zhuǎn)速隨風(fēng)速而變化。為了獲得最大有效功率,可使機(jī)組變速運(yùn)行,通過(guò)調(diào)整轉(zhuǎn)子勵(lì)磁電流的頻率,使其與轉(zhuǎn)子轉(zhuǎn)速疊加后保持定子頻率即輸出頻率恒定。此項(xiàng)應(yīng)用的技術(shù)核心是變頻電源。
2.1.3發(fā)電廠風(fēng)機(jī)水泵的變頻調(diào)速
發(fā)電廠的廠用電率平均為8%,風(fēng)機(jī)水泵耗電量約占火電設(shè)備總耗電量的65%,且運(yùn)行效率低。使用低壓或高壓變頻器,實(shí)施風(fēng)機(jī)水泵的變頻調(diào)速,可以達(dá)到節(jié)能的目的。低壓變頻器技術(shù)已非常成熟,國(guó)內(nèi)外有眾多的生產(chǎn)廠家,并不完整的系列產(chǎn)品,但具備高壓大容量變頻器設(shè)計(jì)和生產(chǎn)能力的企業(yè)不多,國(guó)內(nèi)有不少院校和企業(yè)正抓緊聯(lián)合開(kāi)發(fā)。
2.2在輸電環(huán)節(jié)中的應(yīng)用
電力電子器件應(yīng)用于高壓輸電系統(tǒng)被稱為“硅片引起的第”,大幅度改善了電力網(wǎng)的穩(wěn)定運(yùn)行特性。
2.2.1直流輸電(HVDC)和輕型直流輸電(HVDCLight)技術(shù)
直流輸電具有輸電容量大、穩(wěn)定性好、控制調(diào)節(jié)靈活等優(yōu)點(diǎn),對(duì)于遠(yuǎn)距離輸電、海底電纜輸電及不同頻率系統(tǒng)的聯(lián)網(wǎng),高壓直流輸電擁有獨(dú)特的優(yōu)勢(shì)。1970年世界上第一項(xiàng)晶閘管換流器,標(biāo)志著電力電子技術(shù)正式應(yīng)用于直流輸電。從此以后世界上新建的直流輸電工程均采用晶閘管換流閥。
2.2.2柔流輸電(FACTS)技術(shù)
FACTS技術(shù)的概念問(wèn)世于20世紀(jì)80年代后期,是一項(xiàng)基于電力電子技術(shù)與現(xiàn)代控制技術(shù)對(duì)交流輸電系統(tǒng)的阻抗、電壓及相位實(shí)施靈活快速調(diào)節(jié)的輸電技術(shù),可實(shí)現(xiàn)對(duì)交流輸電功率潮流的靈活控制,大幅度提高電力系統(tǒng)的穩(wěn)定水平。
20世紀(jì)90年代以來(lái),國(guó)外在研究開(kāi)發(fā)的基礎(chǔ)上開(kāi)始將FACTS技術(shù)用于實(shí)際電力系統(tǒng)工程。其輸出無(wú)功的大小,設(shè)備結(jié)構(gòu)簡(jiǎn)單,控制方便,成本較低,所以較早得到應(yīng)用。2.3在配電環(huán)節(jié)中的應(yīng)用
配電系統(tǒng)迫切需要解決的問(wèn)題是如何加強(qiáng)供電可靠性和提高電能質(zhì)量。電能質(zhì)量控制既要滿足對(duì)電壓、頻率、諧波和不對(duì)稱度的要求,還要抑制各種瞬態(tài)的波動(dòng)和干擾。電力電子技術(shù)和現(xiàn)代控制技術(shù)在配電系統(tǒng)中的應(yīng)用,即用戶電力(CustomPower)技術(shù)或稱DFACTS技術(shù),是在FACTS各項(xiàng)成熟技術(shù)的基礎(chǔ)上發(fā)展起來(lái)的電能質(zhì)量控制新技術(shù)。可以將DFACTS設(shè)備理解為FACTS設(shè)備的縮小版,其原理、結(jié)構(gòu)均相同,功能也相似。由于潛在需求巨大,市場(chǎng)介入相對(duì)容易,開(kāi)發(fā)投入和生產(chǎn)成本相對(duì)較低,隨著電力電子器件價(jià)格的不斷降低,可以預(yù)期DFACTS設(shè)備產(chǎn)品將進(jìn)入快速發(fā)展期。
2.4在節(jié)能環(huán)節(jié)的運(yùn)用
2.4.1變負(fù)荷電動(dòng)機(jī)調(diào)速運(yùn)行
電動(dòng)機(jī)本身挖掘節(jié)電潛力只是節(jié)電的一個(gè)方面,通過(guò)變負(fù)荷電動(dòng)機(jī)的調(diào)速技術(shù)節(jié)電又是另一個(gè)方面,只有將二者結(jié)合起來(lái),電動(dòng)機(jī)節(jié)電方較完善。目前,交流調(diào)速在冶金、礦山等部門及社會(huì)生活中得到了廣泛的應(yīng)用。首先是風(fēng)機(jī)、泵類等變負(fù)荷機(jī)械中采用調(diào)速控制代替擋風(fēng)板或節(jié)流閥控制風(fēng)流量和水流量具有顯著的效果。國(guó)外變負(fù)荷的風(fēng)機(jī)、水泵大多采用了交流調(diào)速,我國(guó)正在推廣應(yīng)用中。
變頻調(diào)速的優(yōu)點(diǎn)是調(diào)速范圍廣,精度高,效率高,能實(shí)現(xiàn)連續(xù)無(wú)級(jí)調(diào)速。在調(diào)速過(guò)程中轉(zhuǎn)差損耗小,定子、轉(zhuǎn)子的銅耗也不大,節(jié)電率一般可達(dá)30%左右。其缺點(diǎn)主要為:成本高,產(chǎn)生高次諧波污染電網(wǎng)。
2.4.2減少無(wú)功損耗,提高功率因數(shù)
歐洲專家介紹了近海岸直流電網(wǎng)示范工程的研究結(jié)論,這項(xiàng)研究工作包括近海岸間歇性能源,直流電網(wǎng)經(jīng)濟(jì),控制保護(hù)等問(wèn)題。兩個(gè)著名硬件設(shè)備開(kāi)發(fā)商參與了該項(xiàng)目,完成用于測(cè)試控制技術(shù)開(kāi)發(fā)的低功率模擬器,并證明保護(hù)算法可用于直流電網(wǎng),開(kāi)發(fā)出了基于電力電子和機(jī)械技術(shù)創(chuàng)新的直流斷路器;另有專家提出了利用有限的直流斷路器操作,設(shè)計(jì)具有故障清除能力直流網(wǎng)絡(luò),模擬研究表明使用直流斷路器可迅速隔離直流側(cè)電網(wǎng)故障,即可在點(diǎn)對(duì)點(diǎn)的電纜方案中使換流器繼續(xù)支撐交流網(wǎng)絡(luò)。針對(duì)此問(wèn)題,中國(guó)專家發(fā)言指出可采用全橋型子模塊拓?fù)浣Y(jié)構(gòu)來(lái)清除直流側(cè)故障,實(shí)現(xiàn)與電網(wǎng)換相換流器(LCC)相同的功能。德國(guó)專家提出了關(guān)于采用電壓源換流器(VSC)的交直流混合架空線運(yùn)行的特殊要求,雖然混合運(yùn)行可提高現(xiàn)有輸電通道的容量,但存在一系列挑戰(zhàn),包括利用可控、有效的方式實(shí)現(xiàn)多終端的操作管理,交直流系統(tǒng)的耦合效應(yīng),直流電壓和電流匹配原則以及機(jī)械特性差異等。韓國(guó)專家提出了用于晶閘管換流閥的新型合成運(yùn)行試驗(yàn)回路,該回路可向測(cè)試對(duì)象施加試驗(yàn)用交、直流電壓和電流脈沖,并配置了可在試驗(yàn)前給電容充電的可控硅開(kāi)關(guān),以及為試驗(yàn)回路中晶閘管門極提供觸發(fā)能量的獨(dú)立高頻電源。
1.2可再生能源的并網(wǎng)
美國(guó)專家提出了近海岸高壓直流輸電系統(tǒng)設(shè)計(jì)方案的可靠性分析方法,研究了平均失效時(shí)間和平均修復(fù)時(shí)間等可靠性指標(biāo),并結(jié)合概率(蒙特卡洛)技術(shù)來(lái)評(píng)估風(fēng)速波動(dòng)對(duì)風(fēng)電場(chǎng)的影響,且評(píng)估不同的系統(tǒng)互聯(lián)、系統(tǒng)冗余以及使用直流斷路器與否等技術(shù)方案的能量削減水平,提議將能量削減作為量化直流電網(wǎng)可靠性的指標(biāo)。為設(shè)計(jì)人員選擇不同的技術(shù)方案、拓?fù)浣Y(jié)構(gòu)和保護(hù)方案提供依據(jù)。近海岸直流輸電換流站選址缺乏相關(guān)的標(biāo)準(zhǔn)、項(xiàng)目參考及工程經(jīng)驗(yàn),難以給項(xiàng)目相關(guān)者提供合理的建議,并且可能會(huì)在項(xiàng)目的開(kāi)發(fā)過(guò)程中引入風(fēng)險(xiǎn)。挪威專家針對(duì)此情況提出了一種從石油和天然氣行業(yè)經(jīng)驗(yàn)總結(jié)得出的技術(shù)資格要求,將有助于更加快速、高效、可靠地部署海上高壓直流輸電系統(tǒng)。
1.3工程項(xiàng)目規(guī)劃、環(huán)境和監(jiān)管
哥倫比亞和意大利專家提出了哥倫比亞與巴拿馬電氣互聯(lián)優(yōu)化設(shè)計(jì)方案,初步設(shè)計(jì)方案額定容量為600MW/±450kV,經(jīng)過(guò)綜合比較,方案優(yōu)化為300MW/±250kV,400MW/±300kV的雙極結(jié)構(gòu),并使用金屬回線作為最佳的技術(shù)和經(jīng)濟(jì)解決方案。線路長(zhǎng)度由原來(lái)的600km變?yōu)?80km,但考慮到哥倫比亞輸電系統(tǒng)的強(qiáng)度問(wèn)題,決定保留原來(lái)的輸電路線。貝盧蒙蒂第一條800kV特高壓直流輸電線路項(xiàng)目規(guī)劃構(gòu)想了額定參數(shù)為2×4GW/±800kV雙極結(jié)構(gòu),直流線路長(zhǎng)2092km,連接巴西北部與南部的直流輸電工程方案;印尼第一條Java-Sumatra直流輸電工程,額定參數(shù)為3GW/±500kV,雙極結(jié)構(gòu),直流線路包含架空線和海底電纜,考慮采用每極雙十二脈動(dòng)換流器和備用海底電纜來(lái)提高系統(tǒng)的可靠性和可用率;太平洋直流聯(lián)接紐帶介紹了延長(zhǎng)太平洋北部換流站壽命的最佳方案,將原有的換流器變?yōu)閭鹘y(tǒng)的雙極雙換流器結(jié)構(gòu),但保留多余的2個(gè)換流器閥廳,現(xiàn)以3.8GW/±560kV為額定參數(shù)運(yùn)行。
1.4工程項(xiàng)目實(shí)施和運(yùn)行經(jīng)驗(yàn)
新西蘭和德國(guó)專家提出“新西蘭直流工程新增極3的挑戰(zhàn)和解決方案”,該工程不僅要保證設(shè)備能承受較高的地震烈度,保障其在弱交流系統(tǒng)中安全穩(wěn)定運(yùn)行,還要設(shè)計(jì)合理的設(shè)備安裝地點(diǎn),以及新建極與原有極的一體化控制保護(hù)系統(tǒng);巴西互聯(lián)電力系統(tǒng)的Madeira河項(xiàng)目中SanAntonio發(fā)電廠對(duì)400MW的背靠背中第一個(gè)模塊及額定參數(shù)為3.15GW/±600kV雙極中的第一極進(jìn)行充電,工程因交流系統(tǒng)沒(méi)有足夠的短路容量而延遲工期,后通過(guò)安裝500kV/230kV聯(lián)接變壓器得以解決。印度的Champa-Kurukshetra±800kV/3GW高壓直流工程首次在特高壓輸電工程中采用金屬回線返回方式運(yùn)行,輸電線路長(zhǎng)1035km,遠(yuǎn)期增加容量3GW,雙極功率傳輸容量可達(dá)6GW;法國(guó)與西班牙東部互聯(lián)案例中采用雙回VSC-HVDC饋入交流網(wǎng)絡(luò),研究認(rèn)為VSC-HVDC是首選的技術(shù)解決方案。
2FACTS裝置及技術(shù)應(yīng)用
2.1可再生能源并網(wǎng)
丹麥專家開(kāi)發(fā)了多電平靜止同步補(bǔ)償器(STATCOM)通用電磁暫態(tài)模型,并基于倫敦Array風(fēng)力發(fā)電廠多電平STATCOM現(xiàn)場(chǎng)測(cè)量和電磁暫態(tài)仿真結(jié)果對(duì)比研究進(jìn)行了驗(yàn)證,仿真結(jié)果與現(xiàn)場(chǎng)測(cè)量結(jié)果比較相符,并顯示出良好的相關(guān)性。
2.2提高交流系統(tǒng)的性能
加拿大專家提出了用于工程規(guī)劃的通用VSC模型,開(kāi)發(fā)了基于PSS/E的穩(wěn)態(tài)和動(dòng)態(tài)模型。驗(yàn)證了該模型部分交流側(cè)和直流側(cè)故障,結(jié)果表明具有良好的相關(guān)性,可在新的工程規(guī)劃和規(guī)范研究中應(yīng)用。伊朗專家提出了分布式發(fā)電并網(wǎng)中基于自適應(yīng)脈沖VSC的新型控制方法,與另外兩種控制方法相比,諧波補(bǔ)償和電能質(zhì)量改善比較表明,分布式發(fā)電中諧波含量減少,從而減少諧波注入交流網(wǎng)絡(luò)。“智能電力線路(smartpowerline,SPL)實(shí)驗(yàn)研究項(xiàng)目”引入了在架空輸電線路嵌入微型變電站的概念。電源交換模塊,保護(hù)模塊和在線監(jiān)測(cè)系統(tǒng)可使輸電線路變得更智能,該技術(shù)還可以用于管理功率潮流和額外參數(shù)測(cè)量。
2.3FACTS工程項(xiàng)目規(guī)劃、環(huán)境和監(jiān)管
印度專家進(jìn)行了動(dòng)態(tài)補(bǔ)償裝置在印度電力系統(tǒng)的配置及選址研究,以易受故障擾動(dòng)影響的印度西部地區(qū)為重點(diǎn)研究區(qū)域,并提出了無(wú)功功率控制補(bǔ)償器的最佳位置和動(dòng)態(tài)范圍。
3電力電子設(shè)備的技術(shù)發(fā)展
3.1直流斷路器、直流潮流控制器和故障電流限制裝置
Alstom進(jìn)行了120kV直流斷路器的開(kāi)發(fā)和測(cè)試研究,該斷路器包括電力電子元器件,超快速機(jī)械斷路器,串聯(lián)電容器和避雷器等重要組成部分,可在5.3ms內(nèi)開(kāi)斷電流。ABB提出混合型直流輸電工程斷路器為未來(lái)高壓直流系統(tǒng)的解決方案,描述了混合直流斷路器的詳細(xì)功能、控制方式和設(shè)計(jì)原則,混合斷路器的核心部件同樣為超快速機(jī)械斷路器。ABB的專家還提出了低損耗機(jī)械直流斷路器在高壓直流電網(wǎng)中的應(yīng)用,其可替代混合直流斷路器,開(kāi)斷參數(shù)最大為10kA/5ms。斷路器包含電磁制動(dòng)器、并聯(lián)諧振電路,已完成一個(gè)額定參數(shù)為80kV的斷路器樣機(jī),并成功通過(guò)了開(kāi)斷目標(biāo)電流的試驗(yàn)。
0 前言
現(xiàn)代電力電子技術(shù)的發(fā)展經(jīng)歷了幾個(gè)不同的階段,整流器時(shí)代、逆變器時(shí)代和變頻器時(shí)代,現(xiàn)代電力電子技術(shù)屬于變頻器時(shí)代,同時(shí)又與微電子技術(shù)有效地進(jìn)行了結(jié)合,這不僅使其應(yīng)用范圍十分廣泛,而且在國(guó)民經(jīng)濟(jì)中的地位也變得越來(lái)越重要。
1 現(xiàn)代電力電子技術(shù)的發(fā)展趨勢(shì)
在當(dāng)前科學(xué)技術(shù)快速發(fā)展的新形勢(shì)下,隨著電力電子技術(shù)的不斷革新,其發(fā)展達(dá)到了一個(gè)較高的水平。現(xiàn)代電力電子技術(shù)主要是對(duì)電源技術(shù)進(jìn)行開(kāi)發(fā)和應(yīng)用,可以說(shuō)電源技術(shù)的發(fā)展是當(dāng)前電力電子技術(shù)發(fā)展的主要方向。
1.1 現(xiàn)代電力電子技術(shù)向模塊化和集成化轉(zhuǎn)變
電源單元和功率器件作為現(xiàn)代電力電子技術(shù)的重要組成部分,是電子器件智能化的核心所在,其組成器件具有微小性,因此電力電子器件結(jié)構(gòu)也更為緊湊,體積較小,但其能夠與其他不同器件的優(yōu)點(diǎn)進(jìn)行有效綜合,所以其具有顯著的優(yōu)勢(shì)。也加快了現(xiàn)代電力電子技術(shù)向模塊化和集成化轉(zhuǎn)變的進(jìn)程,為電力系統(tǒng)使用性能的提升奠定了良好的基礎(chǔ)。
1.2 現(xiàn)代電力電子技術(shù)從低頻向高頻化轉(zhuǎn)變
變壓器供電頻率與變壓器的電容體積、電感呈現(xiàn)反比的關(guān)系,在電力電子器件體積不斷縮小的情況下,現(xiàn)代電力電子技術(shù)必然會(huì)加快向高頻化方向轉(zhuǎn)化。可控制關(guān)斷型電力電子器件的出現(xiàn)即是現(xiàn)代電力電子技術(shù)向高頻轉(zhuǎn)化的重要標(biāo)志。而且隨著科學(xué)技術(shù)發(fā)展速度的加快,電力電子技術(shù)也必然會(huì)向著更高頻的方向發(fā)展。
1.3 現(xiàn)代電力電子技術(shù)向全控化和數(shù)字化轉(zhuǎn)變
傳統(tǒng)的電力電子器件在使用過(guò)程中存在著一些限制,而且關(guān)斷電器時(shí)還會(huì)產(chǎn)生一些危險(xiǎn),自關(guān)斷的全控型器件在市場(chǎng)上出現(xiàn)后,有效地彌補(bǔ)了這些限制和避免了危險(xiǎn)的發(fā)生,這也是現(xiàn)代電力電子技術(shù)變革的重要體現(xiàn),表明現(xiàn)代電力電子技術(shù)加快了數(shù)字化發(fā)展的進(jìn)程。
1.4 現(xiàn)代電力電子技術(shù)向綠色化轉(zhuǎn)變
現(xiàn)代電力電子技術(shù)向綠色化轉(zhuǎn)變主要表現(xiàn)在節(jié)能和電子產(chǎn)品兩個(gè)方面。相比于傳統(tǒng)的電力電子技術(shù)來(lái)講,現(xiàn)代電力電子技術(shù)的節(jié)能性更好,這也實(shí)現(xiàn)了發(fā)電容量的有效節(jié)約,對(duì)環(huán)境保護(hù)帶來(lái)了較好的效果。一直以來(lái)一些電子設(shè)備會(huì)將嚴(yán)重的高次諧波電流入到電網(wǎng)中,給電網(wǎng)帶來(lái)較大的污染,導(dǎo)致電網(wǎng)總功率質(zhì)量下降,電網(wǎng)電壓出現(xiàn)不同程序的畸變。到了上世紀(jì)末期,各種有源濾波器和補(bǔ)償器的面世,實(shí)現(xiàn)了對(duì)功率參數(shù)的修正,從而為現(xiàn)代電力電子技術(shù)的綠色化發(fā)展奠定了良好的基礎(chǔ)。
2 現(xiàn)代電力電子技術(shù)的應(yīng)用
現(xiàn)代電力電子技術(shù)的功能具有多樣性的特點(diǎn),其在多個(gè)領(lǐng)域都有著廣泛的應(yīng)用,這也決定了現(xiàn)代電力電子技術(shù)在國(guó)民經(jīng)濟(jì)發(fā)展中占據(jù)非常重要的地位,有著不可替代的作用。
2.1 電源方面
(1)一般電源。現(xiàn)代電力電子技術(shù)在開(kāi)關(guān)電源和供電電源方面都取得了較大的進(jìn)展,交流電直接由整流器轉(zhuǎn)變?yōu)橹绷麟姡@部分直流電一部分由逆變器轉(zhuǎn)換為交流,然后經(jīng)由轉(zhuǎn)換開(kāi)關(guān)到達(dá)負(fù)載,而另一部分則直接對(duì)蓄電池組進(jìn)行充電。一旦逆變器發(fā)生故障,蓄電池組則作為備用電源開(kāi)始直接向負(fù)載提供能量。在現(xiàn)在的電力電子器件中普遍采用MOSFET和IGBT作為電源,不僅具有較好的降噪性,而且電源的效率和可靠性也能夠得到有效的保障。
(2)專用電源。高頻逆變式焊機(jī)電源和大功率開(kāi)關(guān)型高壓直流電源是比較典型的兩種應(yīng)用現(xiàn)代電力電子技術(shù)的專用電源。高頻逆變式焊機(jī)電源是一種高性能的電源,由于大容量模塊IGBT的普遍使用,使得這種電源有著更加廣闊的應(yīng)用前景,逆變式焊機(jī)電源基本采用的都是交流-直流-交流-直流的轉(zhuǎn)換方法,由于焊機(jī)工作的環(huán)境條件惡劣,所以燃弧、短路等就成為了司空見(jiàn)慣的問(wèn)題,而采用IGBT組成的PWM相關(guān)控制器,能夠提取和分析參數(shù)和信息,進(jìn)而預(yù)先對(duì)系統(tǒng)做出處理和調(diào)整。大功率開(kāi)關(guān)型高壓直流電源主要應(yīng)用CT機(jī)、靜電除塵等比較大型的設(shè)備上,因?yàn)檫@類設(shè)備電壓比較高,甚至達(dá)到了50 ~ 159kV,將市電經(jīng)過(guò)整流器整流變?yōu)橹绷鳎缓笈c諧振逆變電路串聯(lián),逆變?yōu)楦哳l電壓,再升壓,最后整流成為直流高壓。
2.2 傳動(dòng)控制及牽引
這主要應(yīng)用在無(wú)軌電車、地鐵列車、電動(dòng)車的無(wú)級(jí)變速和控制等等方面,通過(guò)將一個(gè)固定的直流電壓轉(zhuǎn)換為一個(gè)可以變化的直流電壓,這樣就能夠使控制更加的平穩(wěn)和快速,而且還可以節(jié)能。
2.3 在電力系統(tǒng)中的應(yīng)用
在發(fā)電系統(tǒng)中現(xiàn)代電力電子技術(shù)的應(yīng)用更是廣泛,比如說(shuō)水力風(fēng)力發(fā)電、用電系統(tǒng)、配電、輸電等等都和現(xiàn)代電力電子技術(shù)有著密切的聯(lián)系。目前的風(fēng)力電力機(jī)組已經(jīng)結(jié)合了機(jī)械制造、空氣動(dòng)力學(xué)、計(jì)算機(jī)控制技術(shù)、電力電子技術(shù)等等,而現(xiàn)代電力電子技術(shù)就是發(fā)電系統(tǒng)中不可或缺的重要技術(shù),它對(duì)于電能的轉(zhuǎn)換、機(jī)組的控制和改善電能質(zhì)量等都很重要。
2.4 在節(jié)能和改造傳統(tǒng)行業(yè)中的應(yīng)用
現(xiàn)代工作的開(kāi)展離不開(kāi)電能的支持,電能是現(xiàn)代工業(yè)的重要?jiǎng)恿湍芰吭搭^。隨著我國(guó)工業(yè)用電量不斷增加,用電的不合理及浪費(fèi)現(xiàn)象也日益顯現(xiàn)出來(lái)。這就需要有效地降低能源的消耗,提高電能的利用效率,以便于能夠?qū)Ξ?dāng)前能源緊缺的局面起到一定的緩解作用。因此需要充分的發(fā)揮現(xiàn)代電力電子技術(shù)的性能優(yōu)勢(shì),有效地提高現(xiàn)代電力電子技術(shù)的效率,應(yīng)用現(xiàn)代電力電子技術(shù),通過(guò)工業(yè)控制有效地將電能轉(zhuǎn)換為勞動(dòng)力,建成現(xiàn)代化的智能車庫(kù),從而降低工人的勞動(dòng)強(qiáng)度,實(shí)現(xiàn)人力資源的節(jié)約,確保勞動(dòng)生產(chǎn)力的提高,以便于推動(dòng)傳統(tǒng)行業(yè)的改造進(jìn)程。
2.5 在家用電器方面的應(yīng)用
現(xiàn)代電力電子技術(shù)在我們?nèi)粘I钪袘?yīng)用也較為廣泛,當(dāng)前家用電器普遍應(yīng)用現(xiàn)代電力電子技術(shù),給我們的日常生活帶來(lái)了較大的便利。許多電器都只需要按下按鈕就能進(jìn)行工作,而不需要人們親自動(dòng)手。
3 應(yīng)用展望
在今后現(xiàn)代電力電子技術(shù)應(yīng)用過(guò)程中,需要重視以下幾個(gè)方面的問(wèn)題:首先,需要對(duì)節(jié)能和環(huán)保給予充分的重視,通過(guò)完善控制設(shè)備和設(shè)計(jì)專用的電機(jī)來(lái)有效地提高電機(jī)系統(tǒng)的使用性能和效率;其次,為了實(shí)現(xiàn)節(jié)能和環(huán)保,則需要使用中高壓直流轉(zhuǎn)電系統(tǒng),使其實(shí)現(xiàn)低能耗及低污染;最后,需要加快解決電力系統(tǒng)中儲(chǔ)電裝置的設(shè)置問(wèn)題,需要電力系統(tǒng)設(shè)計(jì)者從控制技術(shù)等方面來(lái)制定切實(shí)可行的解決方案,從而對(duì)電能儲(chǔ)備中存在問(wèn)題進(jìn)行有效解決,更好地推動(dòng)電力系統(tǒng)的持續(xù)、穩(wěn)定發(fā)展。
4 結(jié)語(yǔ)
現(xiàn)代電力電子技術(shù)在多個(gè)領(lǐng)域都得到了廣泛的應(yīng)用,特別是對(duì)電網(wǎng)的控制和轉(zhuǎn)換上發(fā)揮著非常重要的作用。通過(guò)現(xiàn)代電力電子技術(shù)的應(yīng)用,使大功率電能成為其他高新技術(shù)的重要基礎(chǔ),這也決定了現(xiàn)代電力電子技術(shù)在國(guó)民經(jīng)濟(jì)發(fā)展中的重要地位具有不可替代性,對(duì)推動(dòng)經(jīng)濟(jì)和社會(huì)的發(fā)展發(fā)揮著非常重要的作用。
參考文獻(xiàn):
[1] 劉增金.電力電子技術(shù)的發(fā)展及應(yīng)用探究[J].電子世界,2011(9):19+25.
[2] 冷海濱.現(xiàn)代電力電子技術(shù)的發(fā)展趨勢(shì)探析[J].電子技術(shù)與軟件工程,2014(1):156-157.
[3] 韋和平.現(xiàn)代電力電子及電源技術(shù)的發(fā)展[J].現(xiàn)代電子技術(shù),2005(18):102-105.
2“電力電子技術(shù)”課程設(shè)計(jì)改革
“電力電子技術(shù)”課程應(yīng)用性強(qiáng),因此要求學(xué)生有較強(qiáng)的動(dòng)手實(shí)踐能力。課程開(kāi)設(shè)了6個(gè)學(xué)時(shí)的實(shí)驗(yàn),對(duì)學(xué)生來(lái)說(shuō)實(shí)踐時(shí)間較少。因此率先在車輛工程專業(yè)新能源汽車專業(yè)方向開(kāi)設(shè)了“汽車電力電子技術(shù)課程設(shè)計(jì)”課題,時(shí)間為一周,精選了“太陽(yáng)能電動(dòng)車SPWM控制逆變電路設(shè)計(jì)”、“車載逆變電源—推挽式直流變換電路設(shè)計(jì)”、“車載逆變電源—工頻逆變電路設(shè)計(jì)”等設(shè)計(jì)課題,要求學(xué)生通過(guò)課程設(shè)計(jì)能充分了解電力電子技術(shù)在汽車上的應(yīng)用以及應(yīng)用設(shè)計(jì),要求學(xué)生“腳踏實(shí)地”進(jìn)行電路方案論證比較,完成電力電子電路的參數(shù)計(jì)算、器件的選型、繪制電路原理圖等過(guò)程,掌握電力電子電路的設(shè)計(jì),并能夠掌握電力電子器件常用的驅(qū)動(dòng)電路設(shè)計(jì),合理設(shè)計(jì)保護(hù)電路。同時(shí)對(duì)于電路原理圖要求采用EDA(電子設(shè)計(jì)自動(dòng)化,ElectronicDesignAu-tomation)軟件進(jìn)行繪圖,將學(xué)生所學(xué)的電力電子技術(shù)、自動(dòng)控制技術(shù)、EDA技術(shù)等幾門課程在汽車電力電子技術(shù)課程設(shè)計(jì)中進(jìn)行融合,提高學(xué)生的實(shí)際設(shè)計(jì)能力。對(duì)multisim實(shí)踐能力較強(qiáng)、學(xué)有余力的同學(xué)進(jìn)一步指導(dǎo)其采用仿真手段(Matlab或者M(jìn)ultisim)進(jìn)行仿真實(shí)習(xí),論證設(shè)計(jì)結(jié)果。通過(guò)緊張而充實(shí)的課程設(shè)計(jì),大部分的同學(xué)對(duì)電力電子技術(shù)在汽車上的應(yīng)用有了進(jìn)一步的認(rèn)識(shí),并對(duì)所學(xué)的相關(guān)課程進(jìn)行貫通融合,充分了解所學(xué)專業(yè)課程之間的相互聯(lián)系,增強(qiáng)了對(duì)自身所學(xué)專業(yè)知識(shí)架構(gòu)的認(rèn)識(shí),能夠熟練利用相關(guān)課程、相關(guān)技術(shù)手段進(jìn)行電路設(shè)計(jì),實(shí)現(xiàn)在專業(yè)知識(shí)架構(gòu)中的“自由天地”。
2MATLAB/Simulink在三相橋式全控整流電路的應(yīng)用
筆者在電力電子技術(shù)課堂教學(xué)中可以直接在MATLAB/Simulink畫出三相半波可控整流電路,其實(shí)也就是搭建其仿真模型,其過(guò)程十分簡(jiǎn)單,不需占用很多課堂教學(xué)時(shí)間,最重要的是這是一種新鮮事物,可吸引學(xué)生的注意力,增加他們的好奇心,間接地可以提高課堂教學(xué)質(zhì)量。三相半波可控整流電路的仿真模型如圖3所示[4-6]。仿真結(jié)果如圖4所示,其中圖4(a)、(b)和(c)中的每個(gè)波形從上到下分別為觸發(fā)脈沖波形仿真波形、晶閘管電流仿真波形、晶閘管電壓仿真波形、輸入負(fù)載電壓和電流仿真波形。很容易看出,圖4中的各個(gè)仿真波形跟圖2所示的理論分析波形完全一致。在這個(gè)教學(xué)過(guò)程中可以得出以下結(jié)論:第一,將計(jì)算機(jī)仿真軟件引入課堂教學(xué)中達(dá)到了實(shí)驗(yàn)的目的,在教學(xué)過(guò)程中直接對(duì)所學(xué)理論知識(shí)進(jìn)行驗(yàn)證,可以完全等同于在實(shí)驗(yàn)室通過(guò)實(shí)驗(yàn)方法驗(yàn)證理論的正確性,從而節(jié)省了實(shí)驗(yàn)資源。第二,將計(jì)算機(jī)仿真軟件引入課堂教學(xué)中,可以改變傳統(tǒng)的授課方式,改變“滿堂灌”的教學(xué)方式,更能吸引學(xué)生的注意力,激發(fā)他們的學(xué)習(xí)興趣,更重要的是在課后他們可以自己動(dòng)手通過(guò)計(jì)算機(jī)仿真軟件對(duì)當(dāng)天所學(xué)的知識(shí)進(jìn)行驗(yàn)證,其實(shí)這個(gè)過(guò)程就是學(xué)生學(xué)習(xí)和掌握所學(xué)課堂知識(shí)的過(guò)程,如果任課教師布置一些任務(wù),學(xué)生就可以做到學(xué)以致用,達(dá)到培養(yǎng)人才的目的。
起動(dòng)Matlab軟件,打開(kāi)Simulink仿真模塊,通過(guò)拖拽元件構(gòu)建單相橋式全控整流電路電阻性負(fù)載和電感性負(fù)載仿真模型。仿真電路中主要的元件的提取路徑如下所示。
2單相橋式全控整流電路電阻性負(fù)載觸發(fā)角度為450仿真
利用3.1中描述的元件的提取,根據(jù)單相橋式全控整流電路電阻性負(fù)載原理圖,對(duì)所選擇的仿真元件進(jìn)行連線,仿真模型如圖1所示。模塊參數(shù)設(shè)置分別針對(duì)電源、觸發(fā)脈沖、負(fù)載電阻進(jìn)行設(shè)置。電源電壓為100V,50HZ交流電;VT1、VT4觸發(fā)脈沖設(shè)定為幅值為10、周期為0.02S、延時(shí)時(shí)間為0.0025S;VT2、VT3觸發(fā)脈沖設(shè)定為幅值為10、周期為0.02S、延時(shí)時(shí)間為0.0125S;電阻R=2、H=0、F=inf;晶閘管為默認(rèn)值設(shè)定。開(kāi)始時(shí)間設(shè)置為0,終止時(shí)間設(shè)置為0.05,算法設(shè)置為ode23tb。參數(shù)設(shè)定完畢后進(jìn)行仿真,仿真波形如圖2所示。
3單相橋式全控整流電路電感性負(fù)載觸發(fā)角度為45̊仿真
模塊參數(shù)設(shè)置分別針對(duì)電源、觸發(fā)脈沖、負(fù)載電阻進(jìn)行設(shè)置。電源電壓為100V,50HZ交流電;VT1、VT4觸發(fā)脈沖設(shè)定為幅值為10、周期為0.02S、延時(shí)時(shí)間為0.0025S;VT2、VT3觸發(fā)脈沖設(shè)定為幅值為10、周期為0.02S、延時(shí)時(shí)間為0.0125S;電阻R=2、H=0.1、F=inf;晶閘管為默認(rèn)值設(shè)定。開(kāi)始時(shí)間設(shè)置為0,終止時(shí)間設(shè)置為0.05,算法設(shè)置為ode23tb。電感性負(fù)載不帶續(xù)流二極管和帶續(xù)流二極管仿真模型和仿真波形如圖3、4所示。